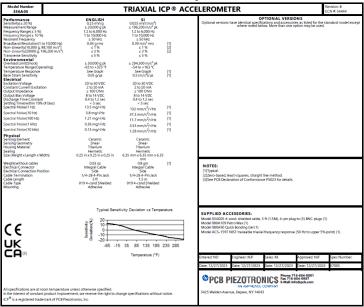


Decoding an Accelerometer Specification Sheet


What Sensor Manufacturer's Don't Tell You!

Adapted from IMAC XXVII Presentation by David Lally

Specification Sheet

Performance characteristics for a particular model of accelerometer

How do Manufacturers Know What to Specify?

- ISA-RP37.2-1982 (1995) provides a "Guide for Specifications and Tests for Piezoelectric Acceleration Transducers for Aerospace Testing"
 - List of basic performance specifications which are normally included + supplemental performance specifications, which may be specified if desired
- Use best judgment to include "important" specifications based on sensor application
- Compare to competitor's specifications

Specification Sheet Reality

- Unfortunately for the test engineer, specification sheets are sometimes generated to be a sales & marketing tool rather than a technical document
 - Goal Make the sensor look as attractive as possible
- Commonly known in the industry as "specmanship"

Why Can Specification Sheets Be Confusing?

- Certain specifications may be omitted
 - Spec was left off because engineer or product manager felt it was not important for intended application
 - Controlling cost by not completely testing the sensor
 - Somebody is trying to hide something
- Sensor performance may be described at "typical" (without an indicated tolerance)
- Approved standards or industry-wide accepted methods do NOT exist for measuring all sensor characteristics

Decoding a Specification Sheet

 Omission of Specifications: A comparison of spec sheets of a similar accelerometer from 5 different sensor manufacturers indicated

5 of 5 Manufacturers Listed:

Reference Sensitivity Acceleration Range Frequency Resp. / Res. Freq. Broadband Resolution Transverse Sensitivity Shock Limit Operating Temp Range Temperature Response

Supply Voltage/Current Output Impedance

Output Impedance
Output Bias Voltage

Housing Material & Connector Sealing

Dimensions / Weight / Mounting

4 of 5 Manufacturers Listed:

Amplitude Linearity

3 of 5 Manufacturers Listed:

Discharge Time Constant
Warm-Up Time
Sensing Element Material
Sensing Element Style

Vibration Limit

Base Strain Sensitivity

2 of 5 Manufacturers Listed:

FS Output Voltage Grounding Output Polarity Thermal Transient Sensitivity

1 of 5 Manufacturers Listed:

Spectral Noise Magnetic Sensitivity

0 of 5 Manufacturers Listed:

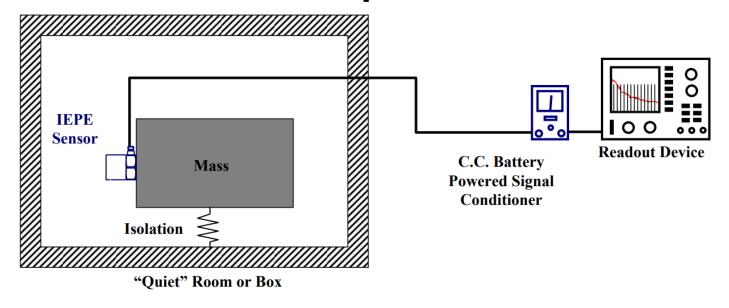
Amplification Factor
Acoustic Sensitivity
Storage Temperature Range
Mounting Error
Sensitivity Stability
Damping
Mounting Surface Preparation
Supply Current Sensitivity

Decoding a Specification Sheet

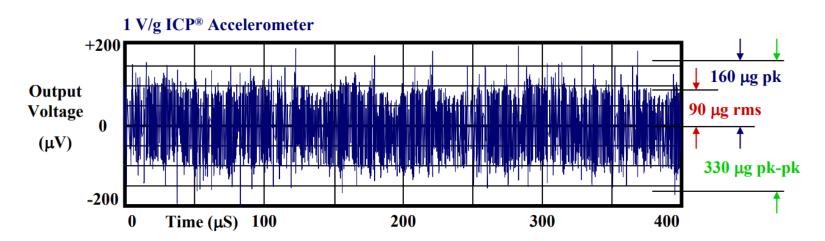
- Typical Specifications When no tolerance is specified, there is no guarantee for exact sensor performance related to that particular specification
- For PCB Sensors, typical
 - Can be considered synonymous with "average"
 - Specification value defined during qualification testing of prototype and pilot run production builds (30 piece minimum for stock and standard sensors)
 - Currently used only for temperature response (also known as thermal sensitivity), noise and weight specifications
- Review of various manufacturer's spec sheets may use "typical" to describe sensitivity, frequency response, capacitance, resonance, bias voltage, strain sensitivity, magnetic sensitivity, time constant, & output impedance

Typical Specifications: Practical Implication

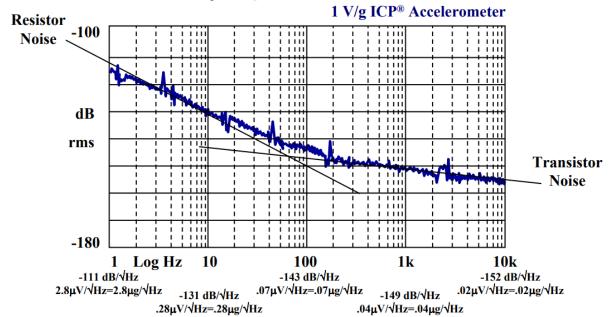
- Every sensor passes a "typical" specification
- Assuming an average value is used, there is still no statistical characterization (e.g. standard deviation) of the specification
- Depending on sensor design and manufacturing process control, actual performance could vary "greatly" from sensor to sensor


Specification	Typical Variation
Sensor Weight	Tenths of a percent
Temperature Response	A few percent
Noise Floor	100 percent

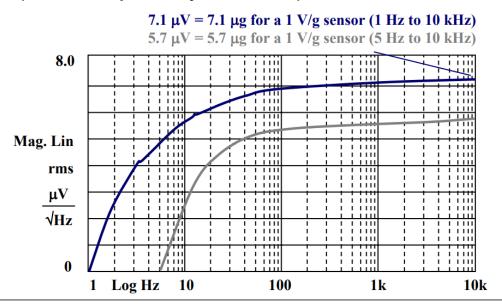
- Threshold: The smallest change in acceleration that will result in a measurable change in sensor output. (ISA RP37.1)
 - Often used interchangeably with Residual Noise, Broadband Resolution and Noise Floor
 - Measured in many different ways and may lead to confusion when using or comparing accelerometers
 - broadband g rms, g pk, g pk-pk
 - frequency limited broadband (1 Hz to 10 kHz) g rms
 - spectral noise floor g/ √Hz



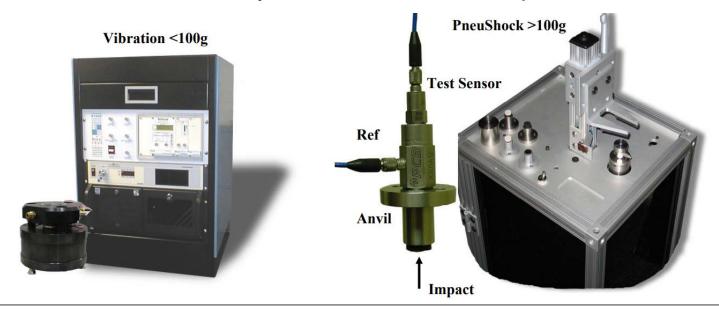
Threshold Test Setup



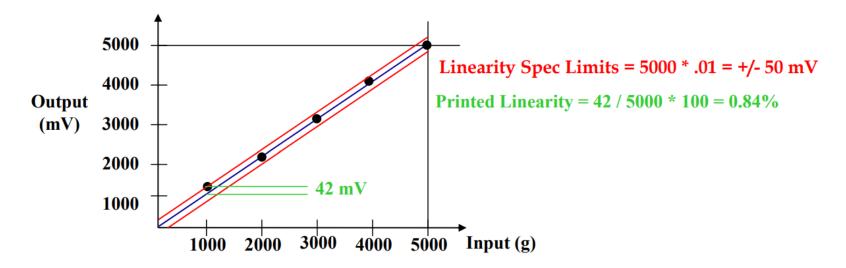
 Broadband Resolution: Early methods simply measured the signal directly on a scope without the use of frequency limiting filters



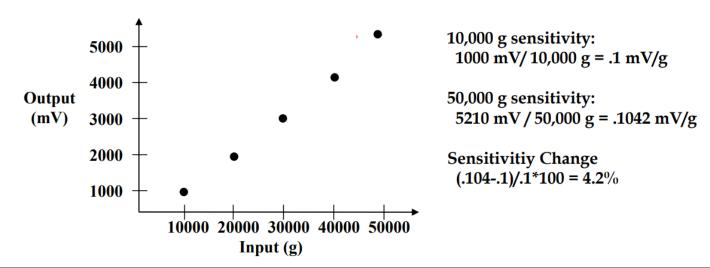
Spectral Noise: Today's procedure uses an FFT Analyzer



 Broadband Noise: Integrate spectral noise floor to obtain broadband (but frequency limited) noise floor

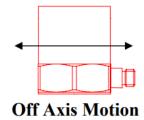


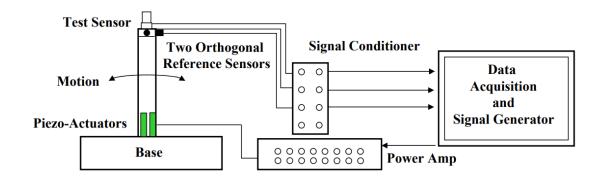
 Amplitude Linearity: Provides an indication that the sensitivity of the sensor does not vary with acceleration amplitude



- Amplitude Linearity: Most often defined as zero-based, least squares straight line
 - Slope of line = Sensitivity
 - Usually specified as <±1%

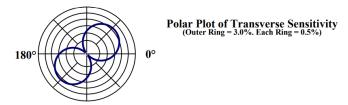
- Amplitude Linearity: is sometimes specified as % FS / g where linearity depicts the maximum sensitivity change
 - For example, 1% per 10,000g, 0 g to 50,000 g means sensitivity can change by 5% over its measurement range

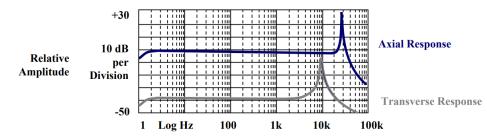

- ESD / RFI Protection Often listed for industrial health monitoring applications
- CE Mark Manufacturer determines acceptable level of immunity
- TEDS Transducer electronic datasheet (V0.9, V1.0, LMS)
- Low Pass Filtering Does the sensor have a single pole (or higher order) low pass filter to reduce amplification at resonance? Where is and what is the tolerance of the cut-off frequency?
- Overload Recovery Size & shape of overload pulse. When is sensor "recovered"?


Transverse Sensitivity

- Sensitivity of the accelerometer to acceleration perpendicular to the sensitive axis
- Simply expressed as % of Axial Sensitivity

$$\% = \frac{\text{Transverse Sensitivity (mV/g)}}{\text{Axial Sensitivity (mV/g)}} \times 100$$


Test typically conducted at single frequency <1000Hz



Transverse Sensitivity

There are directions of maximum and minimum sensitivity

Resonance exists at ~40% of axial resonance

Sealing

- All-Welded, Epoxy Sealed, Hermetic, Sealed by Silicone, and Vented
- How is Hermetic defined?
 - 10⁻⁻³ cc atm/sec Normal Gross Leak / Bubble Test
 - 10⁻⁵ cc He/sec Helium Gross Leak / Bubble Test
 - <10⁻⁸ cc He/sec Helium Leak Test

Sealing: Why is it Important?

- Insulation resistance inside of sensor needs to be on the order of a teraohm (1E12 ohms) for proper operation
- Contamination and / or moisture (humidity) inside the sensor due to a poor seal can reduce resistance and cause performance issues such as short time constant, no turn on, or a low bias sensor
 - Sensor may appear as fine with single point sensitivity check
 - Best remedy includes opening sensor, cleaning, "bake out" and reseal (weld or epoxy)

Other Important Notes

- Specifications are defined at room temperature and may be different at min. / max. operating temperature
 - Bias level, Discharge Time Constant, IR, Capacitance
- Only a small portion of specs are used as acceptance test on every accelerometer that is produced
 - Typically: Reference Sensitivity, Frequency Response, Bias, Transverse Sensitivity and Resonant Frequency
 - At PCB, stock products are sent through an annual verification process to help insure all performance characteristics still pass the specification limits. This helps to validate process control in manufacturing.

Conclusion

- Similar sensors from different manufacturers are often difficult to compare against one another
- May need to contact manufacturer to request additional test data if an "important" specification has been omitted
- Know and trust your vendor
 CAVEAT ENDTO

CAVEAT EMPTOR!

